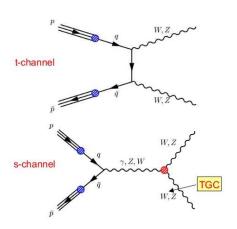
#### WW+WZ in $\ell\nu$ +jets

Viviana Cavaliere

Seminar

10/26/2010

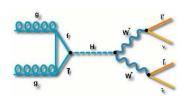
#### Why Diboson?

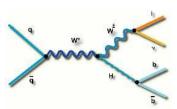


- Studies of electroweak (EW)
   vector boson production are an
   important aspect of the Tevatron
   physics program.
- Potential for new physics is manifest in:
  - Precision measurements of mass and EW parameters
  - Relationships between the masses of the W and Z
  - Increased cross sections or changes in kinematics
- Sensitive to new physics signatures

#### Motivation: Higgs searches

- ullet H o WW is the dominant decay mode for a high mass Higgs  $(m_H>135~{
  m GeV}/c^2)$ 
  - Drives current exclusion limits
  - Direct diboson production is the single most important background
  - Importan to understand
- $WH \to \ell \nu b \bar{b}$  is a promising search mode for low mass Higgs  $(m_H < 135~{
  m GeV}/c^2)$ 
  - Similar topology/final state to  $WW/WZ \rightarrow \ell \nu q \bar{q}$
  - Similar challenges  $\rightarrow$  S/B WH 1.2% WW/WZ 2.9%



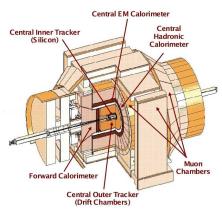


 ${\sf WW/WZ} {
ightarrow} \ \ell \nu q \bar{q}$  is a proving ground for Higgs search

#### CDF detector

- $\begin{tabular}{ll} \hline \bullet & {\rm Proton-antiproton \ collision \ at \ } \sqrt{s} = 1.96 \\ {\rm TeV} \\ \hline \end{tabular}$
- 36 bunches: crossing time = 396 ns
- $\ \, \textbf{P} \mbox{eak luminosity } 4\cdot 10^{32} \mbox{ cm}^{-2} \mbox{ s}^{-1} \label{eq:local_equation}$





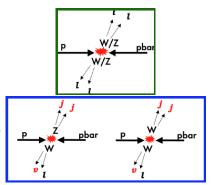
• About 8  $fb^{-1}$  on tape

Seminar

• This analysis uses 4.3  $fb^{-1}$ 

#### Diboson final states

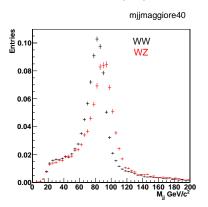
- WW, WZ and ZZ production has already been seen in leptonic final states:
  - Clean Yields but low BR
- Semi-leptonic modes suffer from large background:
  - WW, WZ, ZZ seen in  $\cancel{E}_T$  + jets mode
- Looking at  $\ell\nu$  + jets final state:

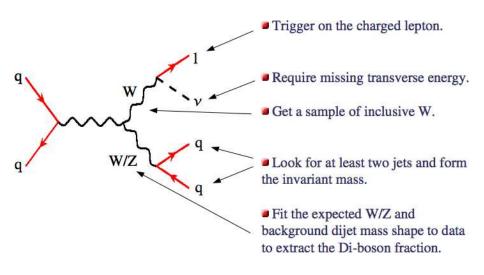


Signal: 
$$\sigma(p\bar{p} \to WW/WZ) = 15.9 \pm 0.9 \text{ pb}$$
  
Background:  $\sigma(p\bar{p} \to W + jets) = 2066 \text{ pb}$   
 $\sigma(p\bar{p} \to Z + jets) = 187 \text{ pb}$ 

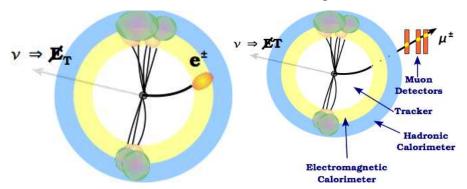
#### WW vs WZ

- We treat events from WW and WZ as indistinguishable signals
  - Largely due to insufficient dijet mass resolution: 10 GeV difference in mass
- Consider the relative selection efficiency for WW vs WZ:
  - WW (WZ) $\rightarrow \ell \nu j j$  branching fraction:  $\sim$  28.5 (14.2)%
  - WW (WZ) $\rightarrow \ell \nu jj \ \sigma \cdot BR$ :  $\sim$  3.5 (0.5) pb

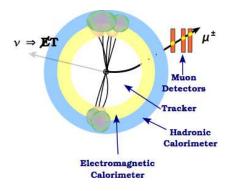




- One lepton (electron or muon) with  $E_T/p_T > 20$  GeV and  $|\eta| < 1.2$ .
- Undetected neutrino manifests as an imbalance in transverse momentum: "missing" transverse energy ( $\cancel{E}_T > 25$  GeV)
- ullet To reduce multijet backgrounds, we require  $M_T^W >$  30 GeV.



- Quark jets arising from  $W/Z \rightarrow q\bar{q}$  decays are very energetic and relatively central
- Cluster energy in cones of  $\Delta R <$  0.4
- Calorimeter signature must be inconsistent with electron signatures
- $\bullet$   $E_T > 20$  GeV and  $|\eta| < 2.4$



#### Backgrounds

- $W \to \ell \nu + \text{jets } (l = e, \mu, \tau)$ :
  - same signature as signal with a much higher cross section.
  - Almost 80% of the sample
  - Shape is taken from Alpgen MC
- $Z \rightarrow ll + \text{jets } (l = e, \mu, \tau)$ :
  - ullet where one of the two leptons escapes detection and produces  $\mathcal{E}_T$
  - shape taken from Alpgen MC.
- $t\bar{t}$  + single top: shape taken from Pythia MC.
- QCD Multijet :
  - e.g a three-jet event in which one jet passes all lepton cuts and, simultaneously, the energies are so badly measured that a large  $\mathcal{E}_T$  is reported.



#### QCD estimation

#### "AntiElectrons":

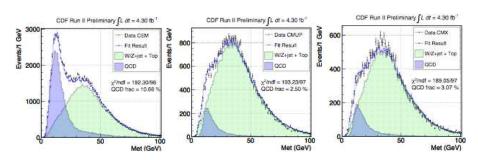
- Some non-kinematic cuts for the electron (EHAD/EM ...) are used to reject fake electrons.
- Model is constructed of events which fail at least two of the non-kinematic cuts but pass all the kinematic cuts of the electron.

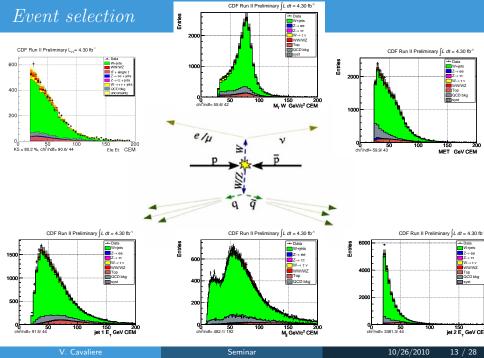
#### "Non isolated muons":

- Using non-isolated events, events which pass all selection criteria except the requirement of lepton isolation.
- Based on the rationale that non-isolated events are typically leptons contained in jets, and jets that contain energetic leptons are more likely to pass lepton identification cuts.

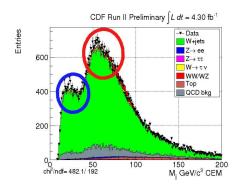
## QCD estimation

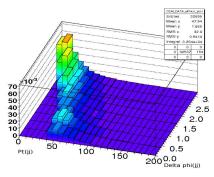
- QCD multi-jet events do not have neutrinos so met distribution is completely different from W+jets
- Extract the fraction of qcd and knowing all the others contributions can extract also the W+jets normalization.



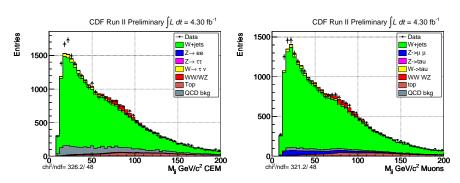


#### Di-jet mass





- The  $E_T$  threshold on the jets gives rise to two peaks:
  - At  $m_{jj} \sim$  20 GeV for almost collinear jets with  $\Delta \phi \sim$  0.5 where the invariant mass is minimum and the combined  $P_{T,jj}$  is maximum
  - The second one is at  $m_{jj} \sim$ 40 GeV, for back to back jets  $(\Delta \phi \sim \pi)$ , where the invariant mass is maximum.
- Decide to cut at  $P_{T,jj} > 40 \text{ GeV/c} \rightarrow \text{loss of} \sim 40 \%$  of the signal



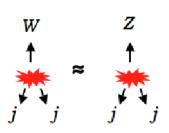
- Want to fit the  $m_{ij}$  distribution
- Need to be sure of the shape of every component

#### Checking the background shapes

- W+jets
- QCD backgrounds

## $Checking\ W+jets\ shape$

- Use Z+jets data to check ewk shape
- Basid Idea: Similar kinematics
- Kinematics of Z+jets not necessarily the same of W +jets  $\rightarrow$  need to account for this

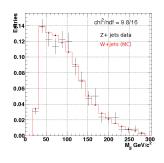


Method:

$$Z + jet(data) \approx \frac{Z + jets(MC)}{W + jets(MC)} \cdot W + jets(data)$$

## $Checking\ W+jets\ shape$

- Use Z+jets data to check ewk shape
- Basid Idea: Similar kinematics
- Kinematics of Z+jets not necessarily the same of W +jets → need to account for this

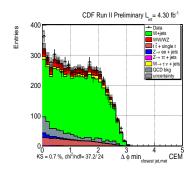


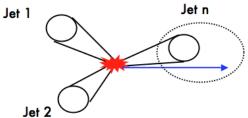
Method:

$$Z + jet(data) \approx \frac{Z + jets(MC)}{W + jets(MC)} \cdot W + jets(data)$$

## Checking the QCD shape I

- ullet QCD o less understood background
- Need independent ways of checking the shape and rate
- Variable sensitive to qcd shape is  $\Delta \phi(E_T \text{closest jet})$



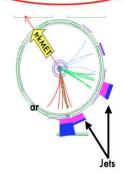


Mis-measured jet tends to align with MET → Δφ should help rejection

## Checking the QCD II

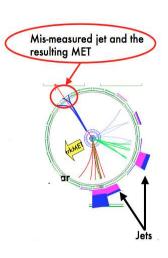
- $E_T$  is normally calculated at calorimeter level
- Can also estimate it using tracks
- ullet True  $ot\!\!\!E_T: \Delta\phi(
  ot\!\!\!E_T, {\sf trkmet})$  small
- Fake  $\mathscr{E}_T$ :  $\Delta \phi(\mathscr{E}_T \text{trkmet})$  large (it could point anywhere)

Missing energy from neutrinos trkMET & MET aligned



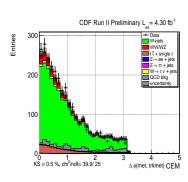
## Checking the QCD II

- $\not\!\! E_T$  is normally calculated at calorimeter level
- Can also estimate it using tracks
- ullet True  $ot\!\!\!E_T: \Delta\phi(
  ot\!\!\!E_T, {\sf trkmet})$  small
- Fake  $\mathscr{E}_T$ :  $\Delta \phi(\mathscr{E}_T \text{trkmet})$  large (it could point anywhere)



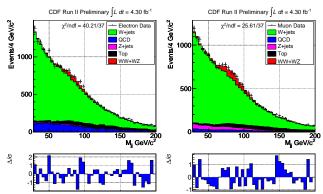
## Checking the QCD II

- $E_T$  is normally calculated at calorimeter level
- Can also estimate it using tracks
- $\qquad \text{True } \cancel{E}_T: \ \Delta\phi(\cancel{E}_T, \mathsf{trkmet}) \\ \mathsf{small}$
- Fake  $\mathbb{Z}_T$ :  $\Delta \phi(\mathbb{Z}_T \text{trkmet})$  large (it could point anywhere)



#### Fit to $M_{jj}$ distribution

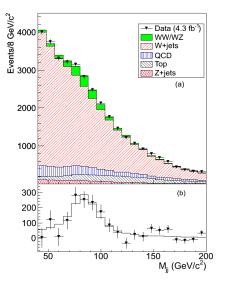
- Binned fit to the mjj shape taking as templates the histograms:
  - $\bigcirc$  W+jet  $\longrightarrow$  completely free in the fit
  - SIGNAL (WW and WZ)
  - **QCD**  $\longrightarrow$  gaussian constraint to the value found in the  $\mathcal{E}_T$  fit with 25% width.
  - Top+single top : constrained to the measured cross section
  - 5 Z+jet: constrained to the measured cross section



#### Systematic summary

- Consider two classes of systematics:
  - systematics affecting signal extraction
  - systematics affecting signal cross-section
- Dominant Systematic for signal extraction:
  - **③** Shape of W+jets: evaluated changing the  $Q^2$  of the MonteCarlo generator (6%).
  - ② Jet energy scale: evaluated varying the Jet energy scale up and down of 1  $\sigma$  ( 6%).
  - QCD Shape: (4%).
- Dominant Systematic for signal cross-section:
  - Luminosity 6%
  - ② ISR/FSR 2%

#### Fit to data and results

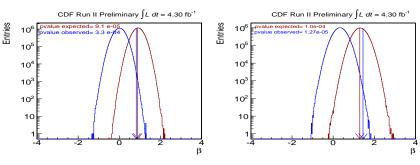


With  $1582 \pm 275 ({\rm stat.}) \pm 107 ({\rm syst.})$  events this is the first observation  $(5.24\sigma)$  of  $WW+WZ \rightarrow \ell \nu + {\rm jets.}$  The resulting x-sec is

$$\sigma(WW + WZ) = 18.1 \pm 3.3(\text{stat.}) \pm 2.5(\text{stat.})$$

that is in agreement with SM expectation ( $15 \pm 0.9$  pb).

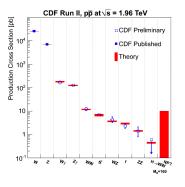
## Significance estimation



- Generate one toy for each combination of the  $N_{syst}$  i.e. in each sample some of the systematic are varied.
- For each sample evaluate how many times the toy results exceeds the value observed in data and choose the worst
- The combined p-value is  $8.56*10^{-08}$
- 5.24  $\sigma$  found where  $5.09\sigma$  was expected

#### Conclusion

- Measured the cross section of WW/WZ  $\rightarrow l \nu$  +jets
  - Opens the way to diboson studies with jets
- PRL published on march 2010: Phys. Rev. Lett. 104, 101801 (2010)
- Webpage for the update

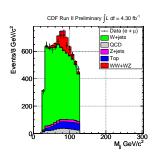


- Work in progress:
  - **①** Tagged analysis for  $WZ o l 
    u + ext{ bjets ( } \sigma = 0.12 ext{ pb )}$
  - Model independent search for di-jet resonances associated with a W

# Backup

#### Search for a di-jet resonance

- Using the same final state to look for resonances in the di-jet mass spectrum
- $\bullet$  Since we are looking at heavier resonances moved the  $E_T$  cut to 30 GeV



General strategy for a bump hunt in the di-jet invariant mass:

- Mass search region:  $120 < M_{ij} < 200 \text{ GeV/c}^2$
- The only assumption is that the signal width is compatible with the experimental resolution: so the expected width is

$$\sigma_{resonance} = \sigma_W \sqrt{\frac{M_{jj}}{M_W}}$$

#### Fitting procedure

- ullet Combined  $\chi^2$  fit to electrons and muons
- 6 templates:

  - QCD (constrained to its fraction with 25 % error)
  - $\bigcirc$  Z + jets (constrained to the measured cross section)
  - top & single top (constrained to the measured cross section)
  - $\bigcirc$  WW/WZ (constrained to the theoretical cross section)
  - onew resonance (gaussian with width related to the mass)
- Procedure:
  - **①** Fit the data without the resonance  $\rightarrow$  evaluate  $\chi^2$
  - ② Fit the data with the resonance ightarrow evaluate  $\chi^2$
  - **③** We add 3 degrees of freedom to the fit (mass, separate yields) so the  $\Delta \chi^2$  should have the distribution of a  $\chi^2$  with 3 degrees of freedom.
  - **1** Verify the behaviour of the  $\Delta \chi^2$  with toys with trial factor.